Motor-Driven Metering Pumps

From Water Treatment to Advanced Processes and Sanitary Processes

High-accuracy and high-functionality technologies for pumps are the research and development themes that we have been pursing for over half a century. Our pumps feature excellent liquid transfer accuracy, as well as combining maintainability and durability, and they can be used in a wide variety of fields and applications such as water/waste water treatment, advance processes, and sanitary processes.

Direct-Driven Diaphragm Metering Pumps

For production processes and water/waste water treatment processes

Hydraulic Diaphragm Metering Pumps

For metered injections in chemical plants

We Deliver Peace of Mind and Reliability for Metered Injection of Various Fluids

INDEX

Features

Plunger Metering Pumps

For high-pressure metered injection of boiler chemicals

3

4

5

7

9

11

13

15

17

18

Basic Metering Pumps that Maximizes "Ease of Use"

Pumps equipped with "ease of use", where the desires of our customers are reflected in the basic functions.

Various general-purpose flange motors are installed. Pumps can also be shipped without a motor attached so that users can mount their own motors.

* Models with a 0.4 kW or higher motor only

Easy-to-operate Flow Rate Adjusting Dial

General-purpose Motor Included as Standard

The flow rate adjusting dial has been made large so as to be more visible and easier to handle. Its dial scale is also made of resin, making it resistant to corrosive liquids, and can be replaced in a simple one-touch operation.

Drain Cock with Pipe Thread

The drain hole is Rc 3/8. External piping can be connected to this hole. preventing the environment from being contaminated during oil replacement. This small but important feature is a direct result of valuable user feedback

Detailed New Design

We have improved the design of pump details so that Z series pumps have longer lasting appeal. Chamfered corners on the casing and curved lines on the mounting base also have resulted in a lighter pump weight.

* Models with a 0.4 kW or higher motor only.

Motor attachment direction

The motor attachment direction can be selected from the vertical type "X" or the horizontal type "Y" according to the space in the pump installation location.

maintenance time.

* Some models only available in vertical type.

Motor attachment direction:

Proprietary Simple Mechanism

Simple with almost no replacement

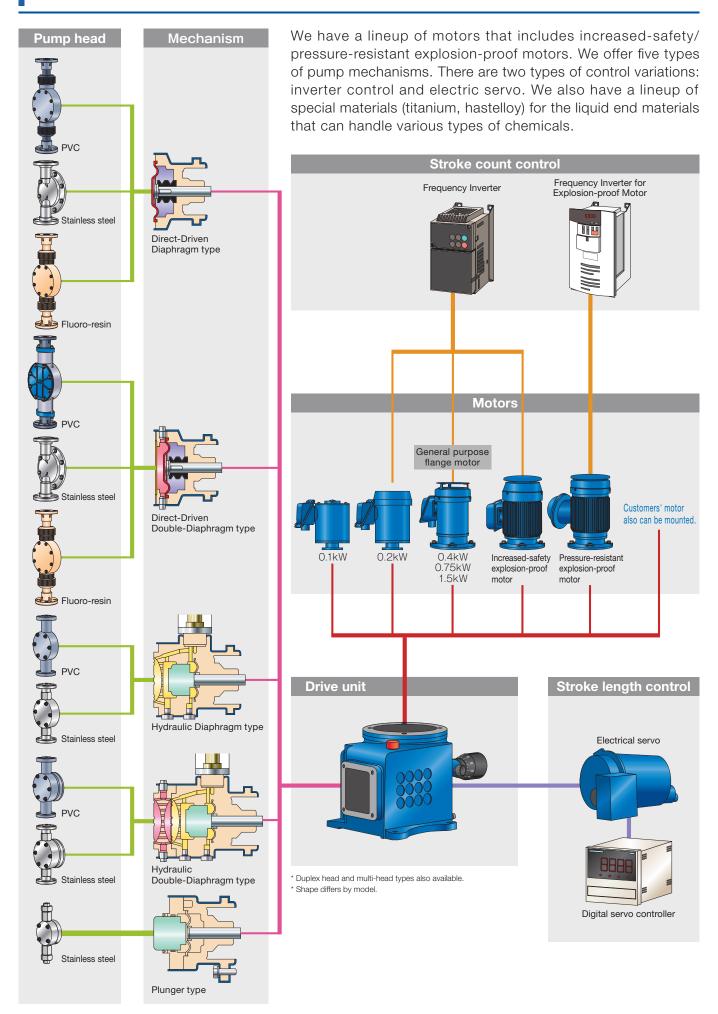
parts, which leads to reductions in

Motor attachment direction: Horizontal type "\

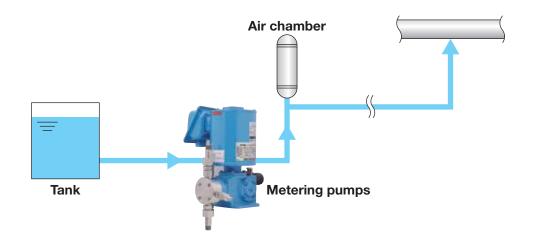
Number of pump heads

Pulsation can be reduced by increasing the number of pump heads to 2 couplings or 3 couplings. The discharge volume also increases by the number of pump heads.

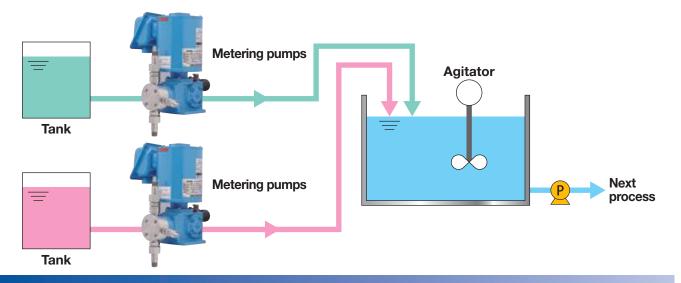
* We also offer Smoothflow diaphragm pumps with no pulsation.



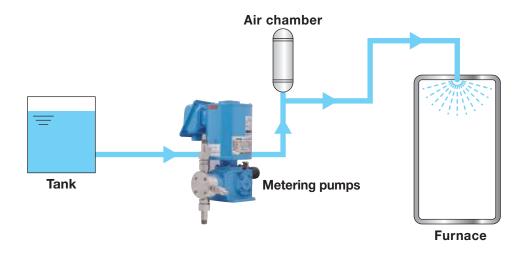
Number of pump heads: 1 coupling

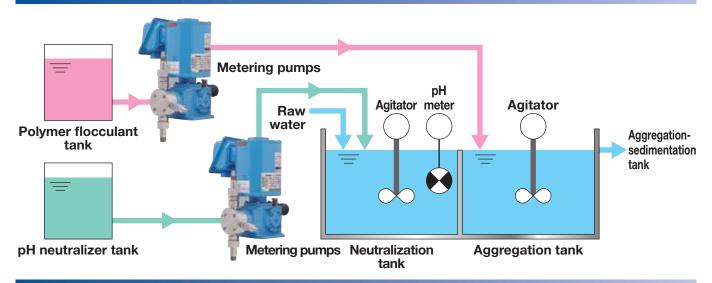

Number of pump heads: 2 couplings

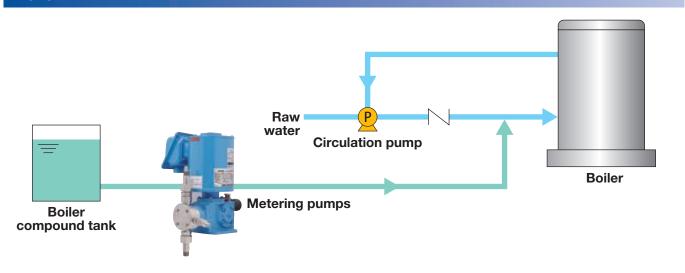
Configurations that can Handle Diverse Needs

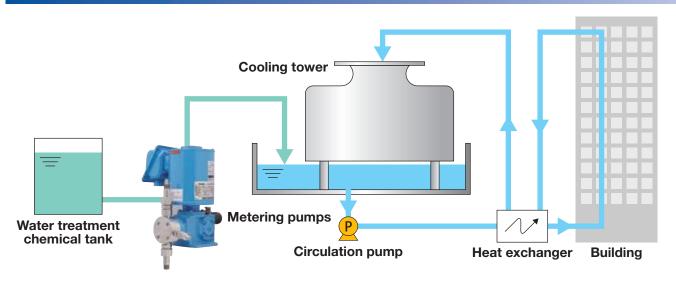


Application Examples


Material Supply


Preparation / Mixing


Temperature Regulation


Waste Water

Boiler

Air Conditioning

Lineup

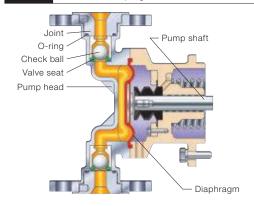
Direct-Driven Diaphragm type (FXD·FYD) Double-Diaphragm type (FXW·FYW)

- Highly corrosion-resistant. Operable in severe operating environments.
- Simple mechanism facilitates maintenance.
- High corrosion-resistant molded diaphragm used.
- Operable at a wide range of sites ranging from water treatment through to manufacturing processes.

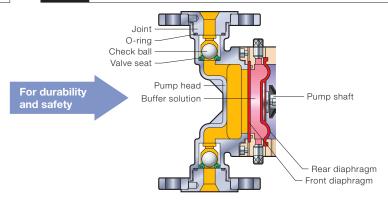
Hydraulic Diaphragm type (FXM·FYM) Double-Diaphragm type (FXMW·FYMW)

- Integrated relief mechanism prevents pump malfunctions and accidents to ensure safe and secure on-site operation.
- High-precision injection achieves stable quality on production lines.
- High corrosion-resistant molded diaphragm used.
- Transfer of liquids containing slurry and hazardous liquids (e.g. liquids that change by contact with air).
- High-pressure injection possible.

Plunger (FXP·FYP)

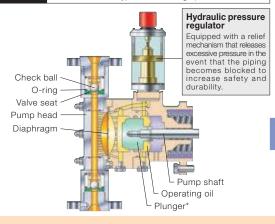

- Capable of high-accuracy, high-pressure injection by adopting a 2-stage valve seat.
- High-durability and simple maintenance.
- High-durability seal components further increase service life.
- Optimal for high-accuracy, high-pressure injection of boiler chemicals.

Pump head structure


Direct-Driven Diaphragm type

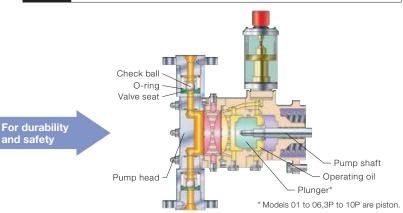
Mechanism
The rotating motion of the motor is converted to reciprocating motion by the eccentric mechanism, and this reciprocating motion is transmitted to the diaphragm to transfer the fluid at a constant rate.

■ Direct-Driven Double-Diaphragm type


The liquid is transferred by conveying the force of the drive diaphragm through the intermediate chamber to the front diaphragm. This is suited to the transfer of strong acids, strong alkali, and organic solvents with a high degree of penetration.

Pump head structure

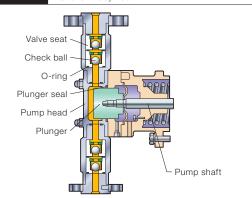
Hydraulic Diaphragm type


Liquid is transferred by conveying the force of the plunger through the hydraulic chamber to the diaphragm. High-accuracy liquid transfer makes this type suitable for high-pressure transfers.

Hydraulic Double-Diaphragm type

Mechanism

The liquid is transferred by conveying the force of the plunger through the hydraulic chamber/intermediate chamber to the diaphragm. There is no wall in the pump chamber, so this type is suited to high-viscosity liquids and liquids containing slurries, as well as organic solvents with strong permeability.



Pump head structure

Plunger type

Mechanism I

The liquid is suctioned and pumped by the reciprocating motion of the plunger applying a volumetric change to the interior of the cylinder.

Plunger type usage precautions

- ●This pump cannot inject liquids containing slurries.
- •Use this pump for injecting liquids with lubricating properties.
- •Use this pump in environments where liquids may leak out to the air.
- •Use this pump with liquids that will not crystalize when they come in contact with the air.

Direct-Driven Diaphragm type (FXD·FYD) Double-Diaphragm type (FXW·FYW)

Performance Specifications

		Model					FXD	·FYD·FXW·	FYW				
Specificati	on		003	006	01	02*3	03	06	08*4	1	2	3*3	4
		L/min	0.03/0.036	0.05/0.06 [0.06/0.072]	0.1/0.12	0.2/0.24	0.3/0.36	0.6/0.72	0.83/1	1/1.2	1.5/1.8	2.5/3	3.3/4*5
Max.disch (50Hz/60	arge volume Hz)*1	L/h	1.8/2.16	3/3.6 [3.6/4.32]	6/7.2	12/14.4	18/21.6	36/43.2	49.8/60	60/72	90/108	150/180	198/240
US G/h		US G/h	0.48/0.57	0.79/0.95 [0.95/1.14]	1.6/1.9	3.2/3.8	4.8/5.7	9.5/11.4	13.1/15.8	15.8/19	23.8/28.5	39.6/47.5	52.3/63.4
MPa					1*6			1	*7	0	.5	0.3	0.3*5
Max.disch	arge pressure	bar			10			1	0		5	3	3
		psi			145			14	15	72	2.5	43.5	43.5
Stroke len	gth*1	mm	2[4]		4		(6	8	6	8	6	8
Stroke per minute (50Hz/60Hz)*1 strokes/mi			53/63 [33/40]	53/63 [63/75]					105/126				
Transferrable	Standard	mPa·s	50 or less										
viscosity		mPa·s			2	2000 or les	S				1000	or less	
Transferra	ble temperature	°C				PVC:0~	40/PVDF·S	SUS:0~60	(no freezing	allowed)*9)		
		PVC	$\phi 4 \times \phi 9$ $\phi 6 \times \phi 11$					φ12>	< φ18		-	_	
		High-viscosity type	φ12×φ18						φ19>	<φ26		-	-
	Hose	PVDF	φ6×φ8				φ12×φ15			-	-		
Connection type		SUS	φ10×φ12				φ12×φ15			_			
type	Flange	Standard					JIS10K15A					JIS10K25A	
	rialige	High-viscosity type			JIS10K15A			JIS10	OK20A JIS10			K25A	
	Union*2						R 3/8					-	_
	Туре		Totally enclo	sed self-coole	d outdoor type	[Totally enclose	ed fan-cooled o	outdoor type]	Total	ly enclose	d fan-cool	ed outdoor	type
	Power supply	V/Hz				3-ph	ase 200V (50Hz·60Hz	z)/220V(60	OHz)			
	Power/Number of poles	kW/P			0.1/4[0.2/4]					0.2/4		
Motor*1	IE code							IE1					
MOTOL	Insulation class/Cor	nduit pipe size						E / G 3/4					
	Specified current/			200V	//50Hz:0.5	8/2.7[1.3/	5.52]			200V/50	Hz:1.1/5.6	[1.3/5.52]	
	Locked rotor current	Α	200V/60Hz:0.56/2.5[1.2/5.38]						200V/60Hz:1/5.4[1.2/5.38]				
			220V/60Hz:0.54/2.75[1.2/5.92]						220V/60Hz:1/5.94[4[1.2/5.92]	
Weight*8	D	kg			12[15.5]			14.5[15.5]		15[15.5]		18[1	8.5]
AACIRI II	W	1/8			14.5[15.5]			16.5[18]		17[18]		21 [2	2.5]

 $^{^{\}star}1$ Values in [] are for motor attachment direction horizontal type "Y".

Liquid End Materials

	VECE	VESE	VTCE	VTCF	VTSF	VT6E	VT6F	STSE	STSF	STST	FTCE	FTCF	FTCT
Pump head	PVC	PVC	PVC	PVC	PVC	PVC	PVC	SCS14*1	SCS14*1	SUS304*2	PVDF	PVDF	PVDF
Diaphragm	EPDM	EPDM	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE
Check ball	Ceramic	SUS304	Ceramic	Ceramic	SUS304	SUS316	SUS316	SUS304	SUS304	SUS304	Ceramic	Ceramic	Ceramic
Joint	PVC	PVC	PVC	PVC	PVC	PVC	PVC	SUS304	SUS304	SUS304	PVDF	PVDF	PVDF
O-ring for joint	EPDM	EPDM	EPDM	Fluoro-rubber	Fluoro-rubber	EPDM	Fluoro-rubber	EPDM	Fluoro-rubber	PTFE*3	EPDM	Fluoro-rubber	(See appended table

^{*1} SCS14 casting has the same composition as SUS316.

O-ring materials for FTCT type

Model	003,006,01,02,03	06,08,1,2,3,4	3P、6、8、10、10P、15、20、20P
Material	Perfluororubber	PTFE	PTFE/FEP + silicon rubber

^{*2} Liquid end materials "STST" only.

^{*3} Motor attachment direction vertical type "X" only.
*4 Can only be selected if Liquid end materials are "VECE" or "VESE" for the direct drive diaphragm type.

^{*5} For the direct drive diaphragm type and diaphragm PTFE, discharge volume: 3 L/min (50 Hz), 3.6 L/min (60 Hz), discharge pressure: 0.25 MPa.

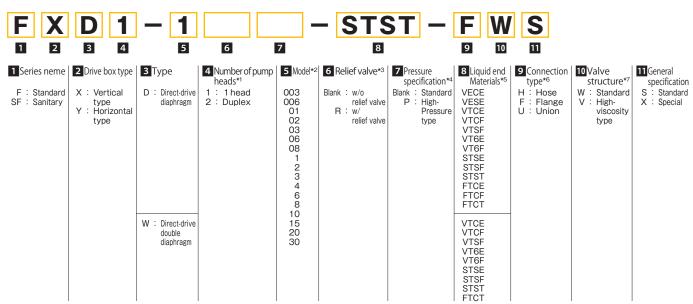
^{*6} Hose connection for Liquid end materials "STST": 0.5 MPa.

^{*7} Hose connection for Liquid end materials "STST", or "FTCT": 0.5 MPa.

^{*8} For Liquid end materials "STST" flange connection.

 $^{^\}star 9$ The PVDF/SUS transferrable temperature for the double-diaphragm type is 0 to 80°C.

^{*2} Models 3P, 6, 8, 10, 10P, 15, 20, 20P, and 30 use SCS14.


^{*3} Models 3P, 6, 8, 10, 10P, 15, 20, 20P, and 30, use PFA/silicon rubber.

Performance Specifications

		Model					FXD•FXW				
Specification	n		3P	6	8	10	10P	15	20	20P	30
		L/min	3/3.6	5.6/6.8	7.2/8.6	10/12	10/12	13.3/16	17.5/21	17.5/21	25/30
Max.dischar, (50Hz/60H		L/h	180/216	336/408	432/516	600/720	600/720	798/960	1050/1260	1050/1260	1500/1800
(001.12.001	US		47.5/57	88.7/107.7	114/136.2	158.4/190.1	158.4/190.1	210.7/253.4	277.2/332.6	277.2/332.6	396/475.2
	MPa		0.7	0	.5	0.3	0	.5	0.3	0.5	0.4
Max.dischar	ge pressure	bar	7	į	5	3	į	5	3	5	4
		psi	101.5	72	2.5	43.5	72	2.5	43.5	72.5	58
Stroke lengt	h	mm	10	8	10		15		2	.0	25
Stroke per m	ninute (50Hz/60Hz)	strokes/min		105/126		81/	/97 105/126				81/97
Transferrable	e viscosity	mPa·s	Ceramic c	heck ball: 1	00 mPa·s, S	tainless stee	el check bal	l: 3000 mPa	a·s (2000 m	Pa⋅s on the	30 type)*2
Transferrable	e temperature	$^{\circ}$			PVC:0~4	0/PVDF·S	US:0~60	no freezing	allowed)*3		
Connection type	Flange		JIS10K25A					JIS10K40A			JIS10K50A
	Туре				Tota	lly enclose	sed fan-cooled outdoor type				
	Power supply	V/Hz			3-ph	ase 200V (50Hz•60Hz	z)/220V(6	0Hz)		
	Power/Number of poles	kW/P		0.4	1/4			0.75/4		1.5	5/4
Motor	IE code			IE	1				IE3		
IVIOLOI	Insulation class/Cond	luit pipe size		E /	G 3/4				F / G 3/4	-	
	0 ''' 1			200V/50H	z:2.3/10.2		200	V/50Hz:3.	5/23	200V/50H	Hz:6.9/56
Specified current/ Locked rotor current		А		200V/60H	Hz:2/9.07		200	V/60Hz:3.2	2/20	200V/60I	Hz:6.1/44
				220V/60H	Hz:2/9.98		220	V/60Hz:3.	1/22	220V/60H	Hz:5.9/51
Weight*1	D	kg	27	2	9	34		53		62	71
A A CIRI II	Weight*1 W		29	3	1	38	5	7		_	

^{*1} For Liquid end materials "STST". *2 For polymer coagulants. Please contact us for other chemicals.

Model Code

^{*1} Pumps with 3 or more heads can also be manufactured. Contact TACMINA for details.

^{*3} The PVDF/SUS transferrable temperature for the double-diaphragm type is 0 to 80°C.

^{*2} For Model 003, if 🗓 Type is Direct-driven double-diaphragm, then 🖸 Drive box type is Horizontal only. For Models 02 and 3, 🖸 Drive box type is Vertical only. For Model 08, if 💆 Type is Direct-driven diaphragm, 3 Liquid end material is VECE or VESE. For Models 20 and 30, 3 Type is Direct-driven diaphragm only.

*3 Models with relief valves are coded as: 003 through 4 for 3 and 5 tandard for 7.

*4 High-pressure models are coded as: Direct-driven diaphragm for 3 and 3, 10, or 20 for 5, or Direct-driven double-diaphragm for 3 and 3 or 10 for 5. 3 Liquid end material is selectable

from VTCE, VTCF, VT6E, VT6F, STSE, STSF, STST, and FTCT.

^{*5} If the liquid end material is VECE, S Model can be any model from 003 through 4. If the liquid end material is VECE or VTSF, Model can be any model from 003 through 03 and Valve structure is High viscosity type. If the liquid end material is FTCE or FTCF, Model can be any model from 003 through 4 and Relief valve is "w/o relief valve." If the liquid end material is FTCT, when 🗓 is Direct-driven diaphragm, 30 is not selectable for 🗓. If the liquid end material is VTCE, VT6E, VT6F, STSE, or STSF, when 💆 Model is 3, then

[☐] Pressure specification is always High-pressure type; otherwise ☐ Model can be any model from 6 through 30.

*6 If the connection type is Union, ☐ Model can be any model from 003 ~ 2 and ☐ Liquid end material is STST. If the connection type is Hose, ☐ Model can be any model from 003 through 2 and ☐ Liquid end material is VECE, VTCF, VESE, VTSF, STST, FTCE, FTCF, or FTCT.

^{*7} If the valve structure is High-viscosity type, B Liquid end material is VESE or VTSF.

Hydraulic Diaphragm type (FXM·FYM) Double-Diaphragm type (FXMW·FYMW)

Performance Specifications

		Model	FXM	·FYM·FXMW·F	YMW		FXM•FXMW		
Specifica	ation		01	02	06	80	1	3	
		L/min	0.097/0.115	0.195/0.235	0.5/0.6	0.67/0.8	1.37/1.65	2.7/3.2	
Max.disc	charge volume 60Hz)	L/h	5.82/6.9	11.7/14.1	30/36	40.2/48	82.2/99	162/192	
		US G/h	1.54/1.82	3.09/3.72	7.9/9.5	10.6/12.7	21.7/26.1	42.8/50.7	
		MPa	1 [2.5]		1[2]	1 [1.6]		1 [1.2]	
Max.disc	charge pressure*1	bar	10[25]	10[20]	10[[16]	10[12]	
		psi	145[3	362.6]	145[290.1]	145[2	232.1]	145[174]	
Stroke le	ength	mm		8			15		
Stroke per	r minute (50Hz/60Hz)	strokes/min		105/126			81/97		
Transfer	rable viscosity	mPa·s			50 o	r less			
Transfer	rable temperature	°C	PVC:0~40/PVDF·SUS:0~80(no freezing allowed)						
	Florida	PVC/PVDF			JIS10K15A			JIS10K20A	
Connection	Flange	SUS*2		JIS30K15A		JIS16	K15A	JIS16K20A	
type	Linian	PVC		VP16			_		
	Union	PVDF/SUS	R 3/8 —						
	Туре			Tota	lly enclosed fan	-cooled outdoor	type		
	Power supply	V/Hz		3-ph	ase 200V (50Hz	·60Hz)/220V(6	OHz)		
	Power/Number of poles	kW/P		0.2/4			0.4/4		
Matau	IE code				IE	1			
Motor	Insulation class/Co	nduit pipe size			E /	G 3/4			
			200V/5	50Hz:1.1/5.6[1.3	3/5.52]	20	0V/50Hz:2.3/1	0.2	
	Specified current/ Locked rotor current*3	A	200V/	60Hz:1/5.4[1.2	/5.38]	2	00V/60Hz:2/9.0)7	
	Eddica fotor darrent		220V/6	60Hz:1/5.94[1.2	2/5.92]	220V/60Hz:2/9.98			
\\\\aigh±*^1	М	l.a		17.5 [18]		30	30	30	
Weight*4	MW	kg		18[18.5]		30	31	30	

^{*1} Values in [] apply if the liquid end material is stainless steel.

Liquid End Materials

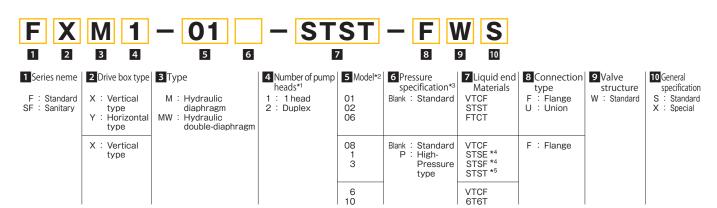
	VTCF	STSE	STSF	STST	6T6T	FTCT
Pump head	PVC	SUS304	SUS304	SUS304	SCS14 *2	PVDF
Diaphragm	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE
Check ball	Ceramic	SUS304	SUS304	SUS304	SUS316	Ceramic
Joint	PVC	SUS304	SUS304	SUS304	SUS316	PVDF
O-ring for joint	Fluoro-rubber	EPDM	Fluoro-rubber	PTFE*1	PFA/silicon rubber • PTFE*3	PTFE

^{*1} Models 08, 08P, 1, 1P, and 3 use PFA/silicon rubber.

 $[\]ensuremath{^{*}2}$ The suction-side nominal pressure is JIS10K.

^{*3} Values in [] are for the horizontal drive box type.
*4 Values are for models using stainless steel type flange connection; values in [] are for the horizontal drive box type.

 $^{^{\}star}2$ SCS14 casting has the same composition as SUS316.


 $[\]ensuremath{^{\star}}\xspace$ Hydraulic double-diaphragm types use PFA/silicon rubber.

Performance Specifications

		Model				FXM·FXMW					
Specifica	ation		6	10	08P	1P	3P	6P	10P		
		L/min	5.5/6.5	8.5/10	0.67/0.8	1.37/1.65	2.5/3	5.5/6.5	8.5/10		
Max.disc (50Hz/6	charge volume	L/h	330/390	510/600	40.2/48	82.2/99	150/180	330/390	510/600		
(0011270	US G/h			134.6/158.4	10.6/12.7	21.7/26.1	39.6/47.5	87.1/103	134.6/158.4		
		MPa	0.7[0.7]	0.6[0.6]		[2.5]		[2]	[1.2]		
Max.disc	harge pressure*1	bar	7[7]	6[6]		[25]		[20]	[12]		
		psi	101.5[101.5]	87[87]		[362.6]		[290.1]	[174]		
Stroke le	ngth	mm				15					
Stroke per	minute (50Hz/60Hz)	strokes/min	80.	/97	81/	97		80/97			
Transfer	rable viscosity	mPa·s				50 or less					
Transfer	rable temperature	°C		PVC:0~40/PVDF·SUS:0~80(no freezing allowed)							
	FI	PVC/PVDF	JIS10K40A –								
Connection	Flange	SUS*2	JIS10K40A		JIS30	K15A	JIS30K20A	JIS20	K40A		
type	Union	PVC	_								
	Union	PVDF/SUS				_					
	Туре			-	Totally enclos	ed fan-cooled	d outdoor type				
	Power supply	V/Hz		,	3-phase 200V	(50Hz·60Hz)	/220V (60Hz)				
	Power/Number of poles	kW/P	1.5	5/4	0.4	1/4		1.5/4			
N4-4	IE code		IE	3	IE	1		IE3			
Motor	Insulation class/Co	nduit pipe size	F/	G 3/4	E /	G 3/4		F / G 3/4			
			200V/50H	Hz:6.9/56	200V/50H	z:2.3/10.2	20	0V/50Hz:6.9	/56		
	Specified current/ Locked rotor current	A	200V/60	Hz:6.1/44	200V/60H	Hz:2/9.07	20	0V/60Hz:6.1	/44		
	Locked rotor current		220V/60I	Hz:5.9/51	220V/60H	Hz:2/9.98	220V/60Hz:5.9/51				
Moigh+*3	М	ka	89	100	3	1	81	89	100		
Weight*3	MW	kg	93	104	31	32	84	93	104		

^{*1} Values in [] apply if the liquid end material is stainless steel.

Model Code

 $^{^{\}star}1$ Pumps with 3 or more heads can also be manufactured. Contact TACMINA for details.

^{*2} The suction-side nominal pressure is JIS10K.

^{*3} Values are for models using stainless steel type flange connection.

^{*2} For Models 08 through 10, Horizontal model can be selected for 2 Drive box type in the case of a two-head application.
*3 For high-pressure models, select 2 from among STSE, STSF, STST, and 6T6T.
*4 Liquid end materials STSE and STSF are not available when 3 Model is 3 and 6 Pressure specification is High-pressure type.

^{*5} If S Model is 3 and S Pressure specification is "P" High-pressure type, the selectable liquid end material is only 6T6T.

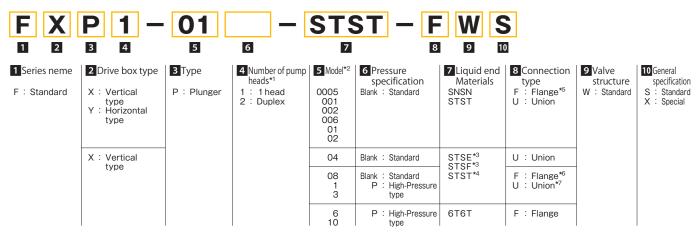
Plunger (FXP·FYP)

Performance Specifications

		Model				FXP	FYP				
Specifica	ation		0005	001	002	006	01	02	04	08	
		L/min	0.0045/0.0055 [0.004/0.005]	0.01/0.012 [0.009/0.011]	0.023/0.028 [0.022/0.027]	0.058/0.07 [0.054/0.065]	0.12/0.14 [0.11/0.13]	0.23/0.28 [0.22/0.26]	0.35/0.42	0.68/0.82	
Max.diso (50Hz/6	charge volume 60Hz)*1	L/h	0.27/0.33 [0.24/0.3]	0.6/0.72 [0.54/0.66]	1.38/1.68 [1.32/1.62]	3.48/4.2 [3.24/3.9]	7.2/8.4 [6.6/7.8]	13.8/16.8 [13.2/15.6]	21/25.2	40.8/49.2	
			0.07/0.09 [0.06/0.08]	0.16/0.19 [0.14/0.17]	0.36/0.44 [0.35/0.43]	0.92/1.11 [0.86/1.03]	1.9/2.22 [1.74/2.06]	3.64/4.44 [3.48/4.12]	5.54/6.65	10.8/13	
		MPa			3			2	10	5	
Max.disc	charge pressure	bar			30			20	100	50	
		psi			435.1			290.1	1450.4	725.2	
Stroke le	Stroke length mm				3	3			15		
Stroke per	$minute (50 Hz/60 Hz)^{\star 1}$	strokes/min	53/63[49/59] 81/97							/97	
Transfer	rable viscosity	mPa·s				50 o	r less				
Transfer	rable temperature	C	0∼80(no freezing allowed)								
0 "	Flange	Discharge side	- JIS30K15A					-			
Connection	rialige	Suction side	- JIS10K15A						-		
	Union		R 3/8					Rc 3/8			
	Туре				Totally e	nclosed fan	-cooled outo	loor type			
	Power supply	V/Hz			3-phase	200V (50Hz	·60Hz)/220	V (60Hz)			
	Power/Number of poles	kW/P			0.2	2/4			0.4	1/4	
Motor	IE code					IE	1				
MOTOL	Insulation class/Co	nduit pipe size				E /	G 3/4				
				20	0V/50Hz:1.1	/5.6[1.3/5.	52]		200V/50H	z:2.3/10.2	
	Specified current/ Locked rotor current*1	A		20		200V/50Hz:2/9.07					
				220V/60Hz:1/5.94[1.2/5.92]					200V/50Hz:2		
Weight*1	Flange	kg		_		14[14.5]	15[1	5.5]	-		
งงคเลาเเ	Weight*1 Union	^6		13[1	3.5]		14[1	4.5]	2	:1	

 $^{^{\}star}1$ Values in [] are for the horizontal drive box type.

Liquid End Materials


	SNSN	STSE	STSF	STST	6T6T
Pump head	SUS304	SUS304	SUS304	SUS304	SUS316
Plunger	SUS304	SUS304	SUS304	SUS304	SUS316
Check ball	SUS304	SUS304	SUS304	SUS304	SUS316
Joint	SUS304	SUS304	SUS304	SUS304	SUS316
O-ring for joint	NBR	EPDM	Fluoro-rubber	PTFE*2	PFA/silicon rubber
Plunger seal*1	NBR	PTFE/SUS301	PTFE/SUS301	PTFE*3	PTFE/Hastelloy-C

^{*1} For Models 0005 through 02, V-packing is used as the plunger seal.
*2 Models 04, 08, 08P, 1, and 3 use PFA/silicon rubber.
*3 Models 04, 08, 08P, 1, and 3, use PTFE/SUS301.

Performance Specifications

		Model				FXP						
Specifica	ation		1	3	08P	1P	3P	6P	10P			
		L/min	1.4/1.68	2.75/3.3	0.68/0.82	1.4/1.68	2.5/3	5.5/6.5	8.5/10			
Max.disc	charge volume	L/h	84/100.8	165/198	40.8/49.2	84/100.8	150/180	330/390	510/600			
(30HZ/0	JOHZ)	US G/h	22.2/26.6	43.6/52.3	10.8/13	22.2/26.6	39.6/47.5	87.1/103	134.6/158.4			
	MPa		2.5	1.2	7	3.5	4	2	1.2			
Max.disc	harge pressure	bar	25	12	70	35	40	20	12			
		psi	362.6	174	1015.3	507.6	580.2	290.1	174			
Stroke le	ngth	mm				15	•					
Stroke per minute (50Hz/60Hz) strokes/min				81,	97			80/97				
Transfer	Transferrable viscosity mPa·s			50 or less								
Transfer	rable temperature	°C			0~80	(no freezing al	lowed)					
	Flongo	Discharge side	JIS30K15A	JIS16K20A		_		JIS20)K40A			
Connection type	Flange	Suction side	JIS10K15A	JIS10K20A		_		JIS10)K40A			
1,00	Union		-	- Rc 3/8 Rc 1/2			Rc 1/2		_			
	Туре				Totally enclos	ed fan-cooled	d outdoor type					
	supply	V/Hz			3-phase 200V	(50Hz·60Hz)	/220V (60Hz)					
	Power/Number of poles	kW/P	0.4	1/4	0.7	5/4		1.5/4				
	IE code		ı	E1			IE3					
Motor	Insulation class/Co	nduit pipe size	E /	G 3/4			F / G 3/4					
			200V/50H	z:2.3/10.2	200V/50H	Hz:3.5/23	20	0V/50Hz:6.9	/56			
	Specified current/ Locked rotor current	A	200V/50H	Hz:2/9.07	200V/60H	Hz:3.2/20	20	00V/60Hz:6.1	/44			
	Locked rotor current		200V/50H	Hz:2/9.98	220V/60H	Hz:3.1/22	22	0V/60Hz:5.9	V/60Hz:5.9/51			
\\\oight	Flange	ka	2	5	_			94	97			
Weight	Union	kg	_		42	44	82		_			

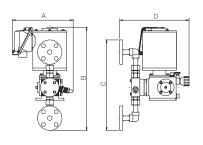
Model Code

^{*1} Pumps with 3 or more heads can also be manufactured. Contact TACMINA for details.

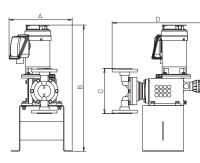
^{*2} For Models 04 through 3, Horizontal model can be selected for 2 Drive box type in the case of a two-head application.

^{*3} Liquid end materials STSE and STSF are not available when 🖪 Model is 3 and 🖪 Pressure specification is High-pressure type.

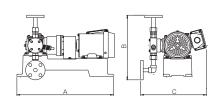
^{*4} If **5** Model is 3 and **6** Pressure specification is High-pressure type, the selectable liquid end material is only 6T6T. *5 Flange connection is not available when **5** Model is 0005, 001, or 002.


^{*6} Flange connection type models are coded as: 1 or 3 for 5 and Standard for 6.

^{*7} If the connection type is Union, 5 Model is 08, or 1 or 3 with High-pressure type for 6.

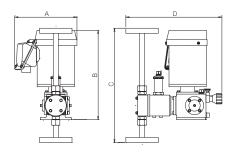

External Dimensions

Direct-Driven Diaphragm type

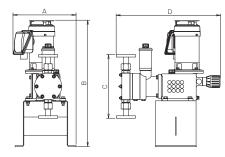


	А	В	С	D
003	237	402	352.5	270.5
006-01	237	402	352.5	272.5
02	237	402	352.5	274
03	237	402	352.5	276
06	212	406.5	361.5	277
1	221	446.5	377	289
2	221	446.5	377	291
3	221	426.5	412.5	299
4	221	426.5	412.5	301

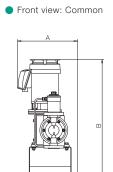
	А	В	С	D
3P	311	621	222	464.5
6	311	621	254	464.5
8	311	621	254	466.5
10	311	621	300	522
10P	350	702	300	587
15	350	702	300	587
20	350	702	300	592
20P	362	745	300	592
30	362	745	375	637.5

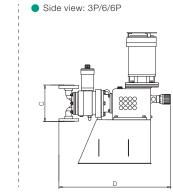

FYD

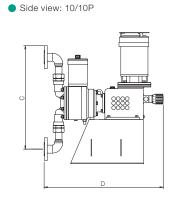
	А	В	С
003	470	315	319.5
006	470	315	319.5
01	470	315	319.5
03	470	315	321
06	470	324	322
1	470	339.5	334
2	470	339.5	334
4	470	412.5	344


Hydraulic Diaphragm type

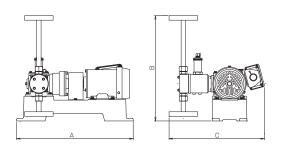
FXM




	А	В	С	D
01.02	221	316.5	405	340.5
06	221	316.5	421	327.5


^{*} For FXMW+FYMW, please contact us.

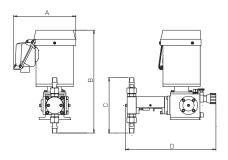
	А	В	С	D
08	311	621	314	513
08P	311	621	314	523
1	311	621	278	513
1P	311	621	340	523
3	311	621	278	515.5

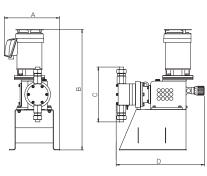


	Α	В	С	D
3P	363	795	222	678
6-6P	363	795	262	683
10·10P	363	795	595	722

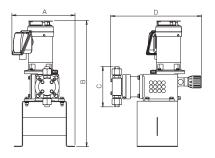
^{*} For FXMW, please contact us.

 $^{^{\}star}$ For further information about FXW and FYW, contact TACMINA.

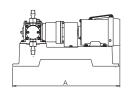

FYM

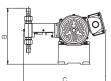

	А	В	С
01.02	470	424	383.5
06	470	432	370.5

Plunger type



	А	В	С	D
0005	221	364.5	196	320.5
001	221	365.5	198	320.5
002	221	364.5	196	320.5
006	221	364.5	196	320.5
01	221	369.5	206	320.5
02	221	369.5	206	320.5




	А	В	С	D
3P	363	795	362	582
6P	363	795	316	624
10P	363	795	3/1/1	632

	Α	В	С	D
04	311	621	198	449
08	311	621	198	449
08P	350	702	198	514
1	311	621	330	476.5
1P	350	702	302	518
3	311	621	268	469

FYP

	А	В	С
0005	475	248	363.5
001	475	249	363.5
002	475	248	363.5
006	475	248	363.5
01	475	253	366.5
02	475	253	366.5

Options, Application Products, and Related Products

For improved safety, accuracy, and simplicity. Options with excellent functionality.

We offer optional products suited to various sites to meet a wide range of needs.

(Valves)

Relief valve

Leak monitor

of a problem.

When the diaphragm

accidently breaks, the

electrode in the buffer fluid promptly detects

and notifies the operator

Automatically releases the pressure when excessive pressure is produced in the pump's discharge-side piping due to clogging by foreign objects or a closed valve.

Back pressure valve

Prevents siphoning (where the liquid naturally flows) caused by the piping conditions.

(Sensor

Pulse sensor

Uses a reed switch to detect the number of pump strokes as a pulse signal. Can be used to create an automatic measured injection system in combination with a pulse counter.

(Control unit)

Inverter (requency control method)

Performs variable speed control of all models of motors at low cost.

(Motor)

AC servo motor

Capable of fine motor control at low/high speeds and in a wide range. This motor does not use brushes, so it is maintenance-free.

Dedicated controller

>> Please visit our website for other products.

Application products that can be used according to conditions and applications.

We offer a rich lineup of products that can be matched to the properties of liquids such as viscosity, percentage of contained slurry, and liquid temperature, as well as conditions such as injection accuracy and safety.

Sanitary specification

- Hygienic wetted part construction without seal components.
- Capable of gentle metered transfers without changing the properties of liquids.

Slurry liquid specification

(T-branch remote head)

- T-branch system where the diaphragm does not directly touch sedimentary slurries.
- Simultaneously solves the problems of diaphragm service life and slurry clogging.

High-temperature fluid specification (T-branch remote head)

- A remote head type which does not transmit heat to the pump itself, making it capable of transferring high-temperature fluids that exceed 100°C.
- Can be equipped with heat-radiation fins and a heat-insulating jacket.

>> Please refer to our catalogs for details on application products.

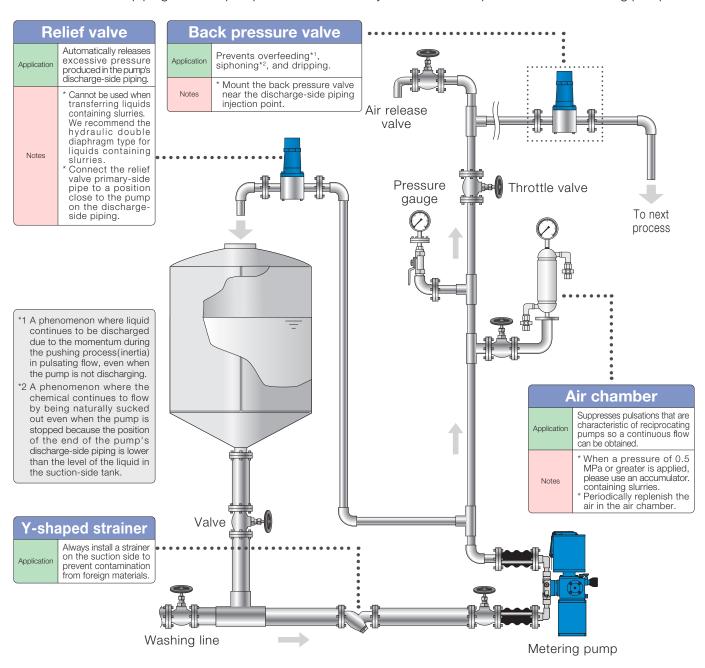
Introducing Smoothflow diaphragm pumps with no pulsation.

Smoothflow pump APL series

- Capable of transfers up to a maximum 20,000 mPa·s.
- Efficiently transfers high-viscosity fluids with an ideal design that holds down dead space

Smoothflow pump BPL series

- Simple construction and excellent cost performance.
- For chemical injection/transfer applications at 0.05 L/min to 80 L/min.


Smoothflow pump PL series Small capacity injection specification

- For R&D and high-mix low-volume processes.
- For injecting minute quantities of chemicals.

Recommended Piping Example

In order to fully demonstrate the capabilities of metering pumps (metering performance, discharge accuracy), the correct piping design and auxiliary equipment must be installed. Appropriate piping design also helps to prevent piping and pump accidents and problems, and promises safety and peace of mind for production lines. The recommended piping for each pump mechanism will fully draw out the capabilities of the metering pump.

Introducing Smoothflow diaphragm pumps with no pulsation.

Point 1

Install an air release pipe on the suction side if necessary. (Example:Liquids that easily vaporize or that produce gas such as sodium hypochlorite).

Point 2

If the length of the dischargeside piping becomes long, always use an air chamber or accumulator." If the length of the piping becomes long, the pipe resistance will increase and abnormal pressure will be generated, which may damage the diaphragm or eccentric shaft.

Point 3

Always install a relief valve on the discharge-side piping. This prevents abnormal pressure from bursting the air chamber or damaging the pump.

Point 4

In order to prevent piping accidents, select a pipe size for the piping in the discharge and suction areas, as well as the relief valve and back pressure valve, that is equal to or larger than the pump diameter.

Point 5

Design the process so that the pump suction-side piping is short and simple.

^{*} The above diagram is one example of piping. For more details, contact your sales representative.

^{*} The hydraulic double diaphragm type is suited to high-accuracy transfer and injection of liquids containing slurries and highly viscous fluids. For detailed piping designs, please contact us

^{*} Install valves before and after each device for maintenance and inspection purposes

^{*3} Problems related to pulsations are resolved by using Smoothflow pumps. For details, please contact a sales representative or refer to the "Smoothflow Pump Catalog".

Product designs and specifications are subject to change without notice for product improvement.

TACMINA CORPORATION

Head Office: 2-2-14 Awajimachi, Chuo-ku, Osaka 541-0047 Japan Tel.+81(0)6-6208-3974 Fax.+81(0)6-6208-3978 URL http://www.tacmina.com E-mail trade@tacmina.com

