

AMKCO VIBRA-SCREEN SEPARATOR

" It always pays to talk to a specialist "

CHOICE OF DESIGNS FOR EFFICIENT SEPARATION - WET OR DRY

AIR TIGHT SEPARATOR

Designed for screening in pneumatic conveying systems. Primarily for inline scalping of dry, free-flowing materials. Assures efficient removal of oversized particles and foreign materials during loading or unloading of tank trucks and rail cars, or while conveying materials to storage or process. Six sizes from $\emptyset 24''$ to $\emptyset 72''$ with stainless steel on all product contact surfaces.

VIBRA-SCREEN

High efficiency circular vibratory separators in 8 sizes from the 18" diameter laboratory / production unit to the 84" diameter machine that is redefining even higher capacity and reliability standards. Creative design features: maximize screen area use, handle varying feed rates, screen materials of changing consistencies, increase the "unders" or "overs" capacities, and prevent screen blinding. One to five screen surfaces yielding up to six predetermined fractions with accurate separations in mesh sizes from 2" down to 25 micron (500 mesh).

AUXILIARY SERIES

Auxiliary series feed frame to increase screen area by up to 70 percent within the same frame height. Applied to increase efficiency of a separation or increase through put. Sizes come in 060'' and 072''.

BATCH SIFTER

Batch dry sifting or wet filtering requires a simple, economical design that does not require continuous discharge of the oversize material. The Ø18" or Ø24" models have only one vibrating motor (electric or air) mounted vertically to impart horizontal motion. Designed for intermittent or continuous operations where occasional but fast separations are needed. Portable or stationary, commonly used above a mixer or bag dump station.

STRAIGHT-FLO SEPARATOR

High volume scalping requires a design where the material moves quickly through the screen and out of the separator. The straight-flo design has dual vibrating motors attached externally at the sides, and a centre conical discharge spout directly in line with the feed. The in-line feature low height allows the scalping function to be easily added to existing flow lines, where overhead space is at a premium, and on-size product drops directly down to the next process. Recommended for high volume dry scalping or high volume wet filtering. Available in all model sizes. 8 sizes from O18'' to O184''.

MEETING EVERY SCREENING REQUIREMENT

AMKCO Separators are compact production machines which makes mechanical separations according to particle size through multi-plane inertial vibration techniques. They are designed and built to solve the most difficult classifying, separating and dewatering problems. One to five screen surfaces are superimposed to yield up to six fractions. Separators are being used to make accurate separations ranging from 2" clear opening to 25 micron (500 mesh). Eight standard models, sized from 18" diameter to 84" diameter are equipped with epoxy or spot welded screens, and all wetted parts are built of stainless steel. Other construction materials or protective coatings can be supplied if required.

ATEX, CE certification

SELECTING SCREEN APPLICATION TYPES

Any screening operation can be divided into one of five categories:

DRY

SCALPING

The removal of a small percentage of oversize from a product.

DE-DUSTING

The removal of a small percentage of fines from a product.

CLASSIFYING

The separation of particles by size into two or more products.

WET

DE-WATERING

The removal of a high percent of solids from a liquid.

FILTERING

The removal of a low percentage of solids from a liquid.

STANDARD ROUND VIBRA-SCREEN DIMENSIONS

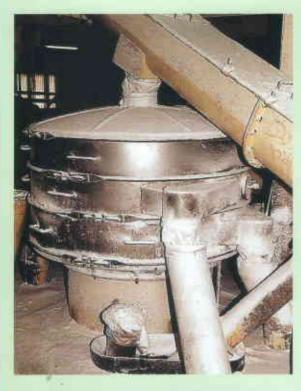
АМКСО		1 Deck		2 D	ecks	3 D	ecks	4 D	ecks						
Model	Α	В	С	D	Е	F	G	Н	1	j	K	L	М	N	0
A-18	33	42	54	52	63	61	72	70	81	9	10	23	35	38	41
A-24	39	50	65	61	76	72	87	83	98	11	16	30	48	53	58
A-30	43	58	77	75	93	92	108	107	124	14	16	40	53	56	60
A-40	55	75	98	96	119	117	139	138	160	20	21	51	76	78	84
A-48	55	75	98	96	119	117	139	138	160	20	21	61	91	89	93
A-60	55	75	98	96	119	117	139	138	160	23	21	76	100	104	109
A-72	60	84	106	105	128	125	148	146	168	32	26	91	114	135	141
A-84	60	90	117	115	144	142	171	169	192	35	26	106	134	135	141

Note: Dimensions in cm. Subject to change without prior notice.

THREE-DIMENSIONAL MOTION

FLOW PATTERN	PHASE	DESCRIPTION	MAJOR APPLICATION
+	0°	Product flows straight from centre to circumference	Easily screenable product, de-dusting
4	15°	Slight vortex motion	Ordinary screening
S	55°		Classification of particles into several product categories, long retention time
4	90°	Grains concentrated towards center	Scalping oversize from product

VIBRA-SCREEN SEPARATION


It is a unique and ideal separation technology which includes a vertical mounted motor to facilitate "three-dimensional motion" composed of circular and elliptic motions in horizontal, vertical and inclined planes. The AMKCO Separator achieves superb performance in sieving dry or wet products having a variety of properties, shapes and sizes.

ACTION AND PRINCIPLE

The principle of the AMKCO Vibra-screen is embodied in a pair of unbalanced weights, an upper weight installed on the upper shaft of the motor and a bottom weight on the lower shaft, which are capable of converting the motor rotation into a "three-dimensional motion". By varying the phase angle between the weights, the product flow pattern and duration time on the screen can be adjusted.

A BROAD SCOPE OF APPLICATIONS

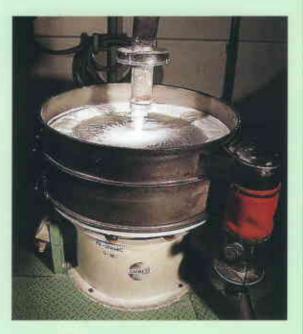
- Classification (uniform particle distribution)
- Separation of product and foreign matter
- Separation of coagulated and coarse grains
- Dispersion of coagulated powder particles
- Separation of certain shapes
- Separation and recovery of useful materials and parts
- Wet filtration
- Cleaning, dehydration, extracting of liquid and drying
- Adjustment to manufacturing process
- Improvement of packing quality
- Measuring constant
 quantity of large volume
 reference for improvement
 of blending accuracy
- Mixing
- Granulating
- Improve fluidity
- Controlling powder flow
- Extraction of dust

QUICK AND EASY SCREEN CHANGE is performed by a sugar producer using a 2-deck Separator to simultaneously classify sugar into 3 products. The users market has several different specifications requiring fast and easy screen changes. For smaller units, quick release clamps and no screen center tie downs make changes even faster.


MINIMUM SCREEN BLINDING for all separation processes is achieved through the use and the combination of several techniques. The vibration of the Separator, the use of sliders, bouncing balls, ultra-sonics, water sprays, wipers, and last but not least, the use of good well tensioned screens.

new FOOD PRODUCT made possible with ultrasonic application to the screen. The material would not process at the required screen mesh. Now, with ultrasonics, the end product is unique with fast pay back to the producer.

tong screen LIFE is our goal. Removing fiber from coconut milk prior to packaging adds little to the cost of the product because the screen lasts nearly a year. Proper tension, high quality wire and bonding or welding helps you achieve quality product at low cost.


required for the Starch Industry. With its large flow rate, very fine particle size and low Bulk density. Auxiliary Series (AS) Machines are designed to give extra screen area to increase screening capacity without increase in floor space.

NO TRANSMITTED VIBRATION was needed for dairy and juice production. The AMKCO separator is mounted on a portable stand, easily moveable to different locations for different products. The various locations have floors that are not always level. Quick and easy shims under the legs keep the screen level for good separation.

ADAPTABILITY was the reason a sand producer installed an AMKCO separator. Variable feed rates, variable screen meshes, and variable product hoppers made our unit their choice.

RELIABLE SCALE-UP was achieved by a fused silica producer who needed to increase production with a new product without lengthy production testing. Small, portable separators offer testing and reliable data for thousands of dry and wet processes. (This adds confidence in the AMKCO selection)

product quality is assured with a final screening before packaging and sending to the customer. Shipping product in bulk only saves the end user time and money when they know they received product is "on spec" and no foreign material is present. A minimum investment for an AMKCO scalping unit gives confidence.

PALM OIL INDUSTRY:

HIGH CAPACITY IN LIMITED SPACE is required by palm oil producers. Twenty hour days over a hot oil tank at 98° C require a high degree of reliability in a cramped environment.

AMKCO round separators used to separate kernel and shell from water in a hydro cyclone process in Kernel Recovery Plant. Better separation compared to rectangular separator and increased recovery rate.

AMKCO 60" diameter separator used to separate solids and fiber from pressed empty bunch slurry to recover valuable oil. Minimizing oil loss in Palm Oil Mill.

AMKCO modified clay bath separator used to separate kernel, shell and clay slurry in one step process. Cost saving and efficient, higher vibration amplitude achieved from high efficiency motor ensure high capacity and better separation.

CHEESE INDUSTRY:

AMKCO is the specialist for whey pre-filtration in the cheese industry. Pre-filtration systems are for well known suppliers of Ultra-Filtration (UF) or Reverse Osmose (RO) filtration systems. AMKCO has supplied a significant amount of whey separators all over the cheese industry, especially in European Countries. AMKCO is also offering separation solutions for Brine and various whey/cheese powders.

SPECIAL AMKCO MACHINE IN VARIOUS INDUSTRIES

Shot Penning Machine. with AMKCO Separator 2 deck with 3 separations.

AMKCO Separator 2 deck with 3 separations with built in Conical Hopper.

AMKCO pneumatic powered lift system is designed for quick and easy screen change with the use of two compact air cylinders.

Bag Dump with AMKCO Straight-flo Machine and Pneumatic Cover.

AMKCO Separator 1 deck with 2 separations complete with Bag Dump and pneumatic cover.

AMKCO 84" Separator was designed for larger flow rates. Increase screen area gives higher screening capacity.

BASIC SEPARATOR FUNCTIONS

DRY APPLICATIONS

SCALPING - Small percentage of over-size

Foods: Dried milk powder, dairy products, starch powder, cocoa powder, dried eggs, spices, tea from bags.

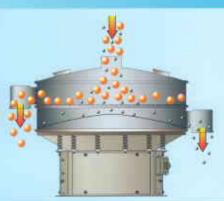
Chemicals and Petrochemicals: PVC, polyethylene pellets, melamine, phenolics, cellulose, acetate, polystyrene, sodium carbonate, calcium carbide, copper sulphate, detergents, iron oxide, stearic acid, titanium dioxide, zinc oxide.

Minerals and Metals: Stones from pit sand barite, mica, perlite, talc, diatomaceous earth.

Animal Feeds: Scalping of foreign material from mash, removal of over size from additives.

Grains: Separation of large foreign materials from bulk shipments, flour sifting.

DE-DUSTING - Small percentage of undersize


Foods: Instant coffee powders, ground coffees, cereals, spices, nuts, potato flakes, additives, vitamins.

Chemicals: Polyethylene pellets, polystyrene, caustic soda flake.

Pulp and Wood Product: Particle board.

Pharmaceuticals: Tablet de-dusting, granulation

Fertilisers: Pelletised, granulated mixes, ammonium nitrate prills.

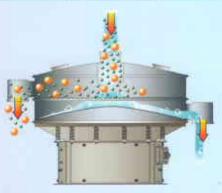
CLASSIFICATION - Sizing into two or more categories

Foods: Pea grading, sugars, salts, spices, nuts, bread crumbs.

Chemicals and Petrochemicals: Catalyst beds, monosodium glutamate, expandable polystyrene beads, resins.

Minerals and Metals: Metal powder (aluminium, copper, bronze, nickel, iron) sand, silica.

Pulp and Wood Products: Wood chips, particle board, sawdust, wood flour **Abrasives:** Sands, carborundum, aluminium oxide, glass beads, blasting grit (steel, oxides, iron, copper oxides).


WET APPLICATIONS

DE-WATERING – High percentage of solids on screen

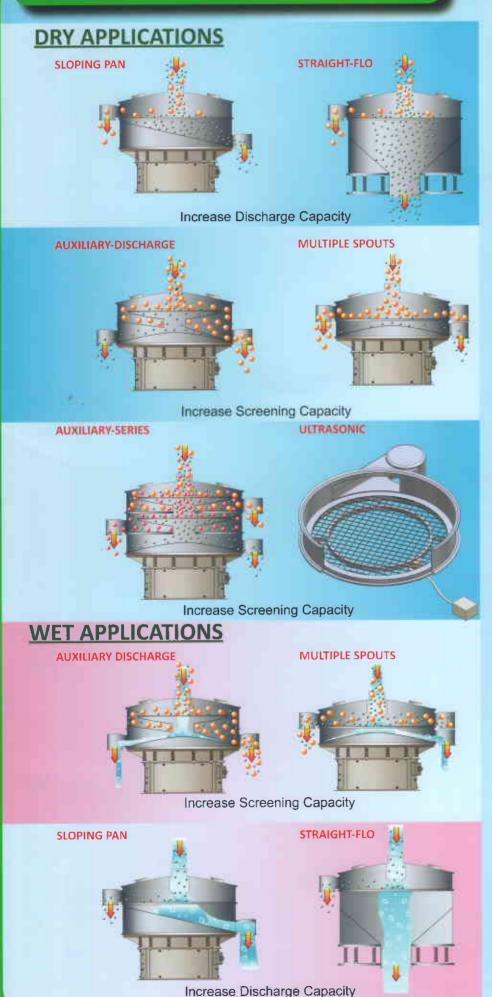
Foods: Separation of bagasse from sugar melt, casein curd from whey, corn fiber from starch slurry, gluten from wheat starch, de-watering of fruits and vegetables, spent coffee grounds, potato slices, instant rice, tuna, caustic bottle wash, apple or citrus juices prior to filtration.

Chemicals: Separation of salt from glycerine, polyethylene form extruder water, coagulum from latex, aligns from digestion liquor, spiralina de-watering, de-watering of digested reclaim rubber, TNT, clarifying of polyvinyl acetate emulsions, paints, enamels.

Pulp: De-watering of rejects before refining, de-watering of knots.

FILTERING - Small percentage of solids remain on screen

Foods: Protein from yeast slurry, chocolate liquor, frying oil, potato starch, soymilk. Chemicals: Aluminum paint suspenscion, feeds to decanters, centrifuges, classify pigments.


Minerals: Separate impurities from kaolin slurry prior to centrifuging, Colombian ore in closed circuit grinding, calcium carbonate.

Pulp and Paper: Recovering fiber from mill effluent, starch size press, coating suspencions, white water to produce shower quality water.

Ceramics: Clarify body and glaze slips for dishes, sanitary ware, fine china, pottery. **Waste Disposal:** Cannery wastes, paunch manure from meatpacking, distillery slop.

TO INCREASE CAPACITY

CENTER FEED SYSTEM

Vibra-screen Separators use a single feed pipe onto the center of the screen allowing 100% of the screen area to be available for separating. Velocity reducers for high flow rates can be used to ensure even and steady flow to the separator. Center feed systems also permit units to fit into existing process lines with a minimum of extra piping.

DISCHARGE FRAMES

Discharge frames allow the rapid discharge of undersize particles or liquid from the separator. Tilted domes, deep frames, and oversized discharge spouts offer different options to obtain higher capacity removal of liquids or solids from the unit. Double slope domes, twin spouts, and baffles can be used to further extend discharge capacities in wet or dry separations.

AUXILIARY DISCHARGE FRAME

This design provides a 360 degree discharge from the screen deck in dry or wet separations. The full screen area is available for separation as solids cannot build up at the screen periphery while waiting for discharge. As solids reach the screen edge, they either fall out of the unit or into a vibrating chute attached to the frame. The de-dusting capacity of the separator is increased greatly, system overload is virtually impossible, and a very low head height is available.

APPLICATION EXAMPLES

		_		_	_
Input material	Apparent Specific gravity	Screen Mesh	Model	Dry/ Wet	Process rate
CERAMICS					
Abrasives	1.5	12, 16, 250	A30C-3-6666	Dry	1000kg
Alumina	0.8-1.2	100	A40C-1-66	Dry	250kg
Fire Brick	1.2	2mm	A60C-1-88	Dry	14000kg
Kaolin	0.4	100	A40C-1-66	Dry	200kg
me	2.3	100	A40C-1-66	Dry	500kg
Silica Grains	1.5	40, 65, 200	A48C-3-8888	Dry	1800kg
Silicone Carbide	1.5	325	A40C-1-66	Dry	150kg
Silicone Nitride	1.0	200	A30C-1-66	Dry	250kg
Slaked Lime	0.7	30, 50	A30C-2-666	Dry	600kg
Slip	1.1	120	A40C-1-88	Wet	100001
<u>Zeolite</u>	0,2-0.6	5, 2, 1 mm	A40C-3-6666	Dry	1000kg
Zircon Sand	4.6	40	A48C-1-88	Dry	6000kg
• CHEMICAL PRODUCTS INC	LUDING RE	SINS			
Bead Slurry	11	50 3mm	A40C-1-66	Wet	7200l 1200l
Epoxy Resin	0.8	100	A40C-1-66	Dry	260kg
MBS Resin	0.3	30	A18C-1-33	Dry	125kg
Melamine Formaldehyde Resins	0.4	35, 60	A18C-2-333	Dry	24kg
P.E. Pellets	1 05	10, 20	A40C-2-666	Dry	3000kg
P.V.C. Resin Pellet	10	9.5mm	A30C-1-66	Dry	770kg
P.V.C. Resin Pellet	10	Ø10mm, Ø5	A48C-2-888	Dry	5000kg
Polyethylene Powder	0.5	60	A48S-1-88	Dry	550kg
Vinyl Chloride Resins	0 45	48, 100	A18C-2-333	Dry	31kg
Zinc Oxide	0.25-0.35	16, 60	A48C-2-888	Dry	1500kg
- COATING MATERIALS					
Acrylic Powder Paint	0.5-0.8	80	A18C-1-33	Dry	50kg
Epoxy Powder Paint	0.5-0.8	60	A18C-1-33	Dry	280kg
Magnetic Toner	5	100	A18C-1-33	Dry	300kg
Non-Magnetic Toner	0.4	60	A40C-1-66	Dry	100kg
Paint	0.8	10	A18C-1-33	Wet	1800
Polyester Powder Paint	0.6-0.8	80	A30C-1-66	Dry	200kg
ELECTRICAL & MAGNETIC	MATERIAL				
Ferrite	1.7-2.3	40	A40C-1-66	Dry	900kg
Goethite	0 2-0 6	325	A30C-1-66	Dry	150kg
Graphite	1.2	18, 40, 80	A40C-1-66	Dry	1400kg
Titanate	1.4	16	A30C-1-66	Dry	500kg

Input material	Apparent Specific	Screen	Model	Dry/ Wet	Process rate
	gravity	(Mesh)			lug/hr or I/hr
- FOODSTUFFS					
Beer Yeast	0.5	32	A48C-1-88	Wet	120001
Common Salt	1.2	10	A18C-1-33	Dry	125kg
Sommon sait	1.2	30, 80	A60C-2-888	Dry	5000kg
Corn Starch	0.8	40	A30C-1-66	Dry	1100kg
Gelatin	0.5	35	A30C-1-66	Dry	500kg
Glucose	0.5	5, 20	A48C-2-888	Dry	2000kg
Granulated Sugar	1.0	14	A48C-1-88	Dry	6000kg
Orange Juice (Tsubu Tsubu)	1.0	5mm, 3mm	A48C-1-88	Wet	20001
Palm Oil	0.9	20, 40	A60C-2-888	Wet	30t/hr
Powder Soup	0.7	6, 80	A18C-1-33	Dry	230kg
Rice Bran	0.5	16	A30C-1-66	Dry	500kg
sauce	1.0	100	A48C-1-88	Wet	60001
Skim Milk Powder	0.58-0.7	24	A60C-1-88	Dry	6000kg
'Tofu" Slurry	10	120	A40C-1-66	Wet	20001
Topica Starch	1.0	200	A48C-1-88	Wet	180001
Wheat Starch	1.0	150	A18C-1-33	Wet	10001
Wileat Starcir	1.0	250	A48C-1-88	Wet	30001
* MEDICALS					
Health Food/ Medicals	1.2	40, 80	A40C-2-666	Dry	200kg
Injection	1.0	Ø1mm	A18C-1-33	Wet	600!
Medical Powder	0.8	80	A18C-1-33	Dry	420kg
• METALS					
Aluminium Powder	0.7	80, 120	A18C-1-33	Dry	300kg
Brass Powder	1.5	100, 200, 325	A40C-3-6666	Dry	100kg
Electrolytic Copper Powder	1.3-2 3	24	A40C-1-66	Dry	200kg
Gold Bronze Powder	2.0	100	A18C-1-33	Dry	50kg
ron Powder	2.8	400	A18C-1-33	Dry	200kg
Manganese Carbonate	3.7	60	A30C-1-66	Dry	250kg
Manganese Dioxide	2.0	60	A40C-1-66	Dry	1500kg
Powder for Alloys	3.0	200	A18C-1-33	Dry	200kg
Steel Shot	4	4, 8, 42	A18C-3-3333	Dry	1000kg
Titanium Dioxide	2.1	16	A18C-1-33	Dry	500kg
Tungsten	8.3	20, 60, 100	A30C-3-6666	Dry	300kg
Welding Powder	0.95	20, 200	A40C-2-666	Dry	500kg

TESTING OF PRODUCT RECOMMENDED

• MODIFICATIONS AVAILABLE TO INCREASE CAPACITY OR MEET SPECIFIC NEEDS

Note:

In the item of dry/wet, "dry" denotes that the input material is so dry that it flows and has no free moisture, and "wet" denotes that the input material is so wet that it should be processed in slurry.

Process rates listed are the examples which were offered by the sampled users of AMKCO Vibra-screen. The data may be used as reference. All data are to be evaluated in accordance with product, properties, specific gravity of input material, screen mesh, ambient temperature and humidity.

SCREEN BLINDING PREVENTION

SCREEN CLEANING RINGS

Screen cleaning rings (sliders) are supported closely below the screen by a stainless steel perforated plate or a courser screen. Vibration of the separator causes the sliders to rub against the bottom surface of the screen. This action helps prevent screen blinding by creating shearing forces that cut fibers and scrape away gummy materials. The sliders operate with 1 to 2mm of clearance to allow 100% screen area contact, are hollow to promote product flow, and are available in a variety of materials for increased chemical, temperature, or abrasive resistance.

The rings are commonly available in polyester, food grade nylon and polyurethane with excellent wear resistance. Available in single ring or cluster. In heights of 22 and 23mm.

BALL TRAY

The Ball Tray is a system that is especially appropriate for two different types of blinding problems. One type of situation is for near size, dry material screening. The second is for material that tends to agglomerate on the top of the screen. The bouncing balls flex the screen slightly, dislodge material that may be stuck in the wires, and also lifts the material to keep it flowing. A ball support screen is mounted below the operating screen.

These bouncing balls are available in natural rubber, neoprene, silicone, EPDM, polyurethane and nitrile. Sizes range from 16, 22, 25, 28, 35 and 50mm in diameter.

ULTRASONIC

Ultrasonic is an add-on secondary vibration to the primary vibrating screen. The secondary vibration operates at a very high frequency (30 to 38 KHz) to generate an additional uniform vibrating motion of about 5 microns to the screen mesh. This energy breaks and or greatly reduces the electrical bond between small particles which then allows the separated particles to be screened.

Sonoscreen can be installed or retrofitted in any operational vibrating screen. Items needed are an ultrasonic generator, ultrasonic screen resonator with transducer and high frequency cable connector.

WIPERS

These are soft strips that tap lightly on the top surface of the screen. The vibrating motion of the separator flex the strips to tap on the screen. It helps to break up lumps and push the under-sized product through the screen mesh.

Common materials for this wiper are neoprene or polyurethane.

SCREEN MESH & OPENINGS

	TENSIL BOLTIN	IG CLOTH (TBC)			MARKET G	RADE (MG)		
Opening	%	Wire Dia.	Mesh	Opening	96	Wire Dia. Mesh		
n Microns	Open Area	mm	Count	In Microns	Open Area	mm	Count	
				11.099	76.4	1.600	2	
				10.668	70.6	2.032		
				7087	70.1	1.371	3	
6	The same of			5138	65.9	1.206	4	
1				4750	56.0	1.600	4	
4	S AND	210		4038	63.2	1.041	5	
1	The same			3347	62.7	0.883	6	
		- 200		2743	57.2	0,889	7	
	07		0	2448	60.2	0.726	8	
	6 14 E	100		1885	56.3	0.655	10	
	1			1854	64.5	0.457	11	
arthrasar I	42213		. Par	1532	51.8	0.584	12	
1359	73.3	0.228	16	1295	51.0	0.518	14	
1158	70.2	0.228	18	1130	50.7	0.460	16	
1041	67.2	0.228	20	201	46.5	0.100	7.5	
965	69.7	0.190	22	981	48.3	0.439	18	
868	67.2	0.190	24	876	46.2	0.411	20	
787	64.8 62.4	0.190	26	704	44.2	0:355	2.4	
716 681			28 30	704	44.2	0.355	24	
630	64.8 62.7	0.165 0.165	32	-				
582	60.7	0.165	34					
541	58.7	0.165	36	516	37.1	0.325	30	
503	56.7	0.165	38	310	37.1	0.323	50.	
470	54.8	0.165	40					
465	59.1	0.139	42	1				
437	57.4	0.139	44	447	37.9	0.299	35	
411	55.8	0.139	46			0.233	- 00	
389	54.2	0.139	48	381	36.0	0.264	40	
368	52.6	0.139	50		d w		tales per inch	
348	51.0	0.139	52			AMATERISAN		
330	49.4	0.139	54	1 -	++++	H + H	-	
323	54.6	0.114	58					
310	53.3	0.114	60				H	
295	51.7	0.114	62		1" length eg (1	Z mesh)	1	
282	50.7	0.114	64	279	30.3	0.229	50	
269	54.9	0.094	70					
259	53.8	0.094	72					
249	52.7	0.094	74					
241	51.7	0.094	76		27/0/22			
231	50.6	0.094	78	233	30.5	0.190	60	
224	49.6	0.094	80					
213	49.8	0.089	84					
	47.9	0.089	88					
200	47.0	0.089	90	470	24.4	611	22	
200 193	47.8		0.0	178	31.4	0.14	80	
200 193 180	45.0	0.089	94					
200 193 180 165	45.0 46.9	0.089 0.076	105		20.2	0.114	100	
200 193 180 165 147	45.0 46.9 47.3	0.089 0.076 0.063	105 120	140	30.3	0.114	100	
200 193 180 165 147 119	45.0 46.9 47.3 46.4	0.089 0.076 0.063 0.055	105 120 145	140 114	30.5	0.094	120	
200 193 180 165 147 119 106	45.0 46.9 47.3 46.4 47.1	0.089 0.076 0.063 0.055 0.048	105 120 145 165	140 114 104	30.5 37.9	0.094 0.066	120 150	
200 193 180 165 147 119 106 86	45.0 46.9 47.3 46.4 47.1 46.2	0.089 0.076 0.063 0.055 0.048 0.040	105 120 145 165 200	140 114 104 88	30.5 37.9 35.1	0.094 0.066 0.061	120 150 170	
200 193 180 165 147 119 106	45.0 46.9 47.3 46.4 47.1	0.089 0.076 0.063 0.055 0.048	105 120 145 165	140 114 104 88 74	30.5 37.9 35.1 33.6	0.094 0.066 0.061 0.053	120 150 170 200	
200 193 180 165 147 119 106 86 74	45.0 46.9 47.3 46.4 47.1 46.2 46.0	0.089 0.076 0.063 0.055 0.048 0.040 0.035	105 120 145 165 200	140 114 104 88 74 61	30.5 37.9 35.1 33.6 36.0	0.094 0.066 0.061 0.053 0.040	120 150 170 200 250	
200 193 180 165 147 119 106 86 74	45.0 46.9 47.3 46.4 47.1 46.2 46.0 are square mes	0.089 0.076 0.063 0.055 0.048 0.040 0.035	105 120 145 165 200	140 114 104 88 74 61	30.5 37.9 35.1 33.6 36.0 32.2	0.094 0.066 0.061 0.053 0.040 0.040	120 150 170 200 250 270	
200 193 180 165 147 119 106 86 74 screen listed	45.0 46.9 47.3 46.4 47.1 46.2 46.0 are square messable in 304/316	0.089 0.076 0.063 0.055 0.048 0.040 0.035	105 120 145 165 200 230	140 114 104 88 74 61 53 43	30.5 37.9 35.1 33.6 36.0 32.2 30.8	0.094 0.066 0.061 0.053 0.040 0.040 0.035	120 150 170 200 250 270 325	
200 193 180 165 147 119 106 86 74 screen listed nmonly avail	45.0 46.9 47.3 46.4 47.1 46.2 46.0 are square messable in 304/316	0.089 0.076 0.063 0.055 0.048 0.040 0.035 n. stainless steel. in polyester or n	105 120 145 165 200 230	140 114 104 88 74 61	30.5 37.9 35.1 33.6 36.0 32.2	0.094 0.066 0.061 0.053 0.040 0.040	120 150 170 200 250 270	

CONTACTS

AMKCO is a manufacturer of screening, sieving, and separation equipment for the chemical, food, pulp and paper, and other processing industries. Our core product is the circular vibratory screen, a compact production machine for making mechanical separations through the proven use of multi-plane, inertial vibration techniques first patented in the USA in 1954.

AMKCO's mission is to provide the highest value in the market at the lowest cost. We use only modern KEMA certified motors. We give a one year, no nonsense warranty on standard frames. We provide the best possible customer service. AMKCO has personalized engineering service to solve the non-standard applications.

We are ISO certified and accredited.

Our product lines of circular vibratory separators have led us to develop machines to process paper mill white water, to pulverize, and to wet grind to 1 micron.

In addition to the standard machines described in this brochure, AMKCO offers a wide range of special units and systems to meet special screening requirements.

Manufactured in Singapore And The Netherlands

Technical Representatives:

AMKCO EUROPE BV

Industrieweg 20-22, 1566 JP Assendelft The Netherlands

Tel: (31) 75-6149854 • Fax: (31) 75-6149855

E-mail: info@amkco.nl Website: www.amkco.com

AMKCO PTE LTD

51 Bukit Batok Crescent #02-12, Unity Centre, Singapore, 658077

Tel: (65) 6316-3050 • Fax: (65) 6316-3040

E-mail: amkco@pacific.net.sg Website: www.amkco.com